Systematic Evaluation of Convolution Neural Network Advances on the ImageNet
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311817" target="_blank" >RIV/68407700:21230/17:00311817 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1077314217300814" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1077314217300814</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2017.05.007" target="_blank" >10.1016/j.cviu.2017.05.007</a>
Alternative languages
Result language
angličtina
Original language name
Systematic Evaluation of Convolution Neural Network Advances on the ImageNet
Original language description
The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
1090-235X
Volume of the periodical
161
Issue of the periodical within the volume
August
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
11-19
UT code for WoS article
000410718600002
EID of the result in the Scopus database
2-s2.0-85019358051