All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Systematic Evaluation of Convolution Neural Network Advances on the ImageNet

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311817" target="_blank" >RIV/68407700:21230/17:00311817 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S1077314217300814" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1077314217300814</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cviu.2017.05.007" target="_blank" >10.1016/j.cviu.2017.05.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Systematic Evaluation of Convolution Neural Network Advances on the ImageNet

  • Original language description

    The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computer Vision and Image Understanding

  • ISSN

    1077-3142

  • e-ISSN

    1090-235X

  • Volume of the periodical

    161

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    11-19

  • UT code for WoS article

    000410718600002

  • EID of the result in the Scopus database

    2-s2.0-85019358051