Working hard to know your neighbor's margins: Local descriptor learning loss
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00317310" target="_blank" >RIV/68407700:21230/17:00317310 - isvavai.cz</a>
Result on the web
<a href="http://papers.nips.cc/paper/7068-working-hard-to-know-your-neighbors-margins-local-descriptor-learning-loss" target="_blank" >http://papers.nips.cc/paper/7068-working-hard-to-know-your-neighbors-margins-local-descriptor-learning-loss</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Working hard to know your neighbor's margins: Local descriptor learning loss
Original language description
We introduce a loss for metric learning, which is inspired by the Lowe's matching criterion for SIFT. We show that the proposed loss, that maximizes the distance between the closest positive and closest negative example in the batch, is better than complex regularization methods; it works well for both shallow and deep convolution network architectures. Applying the novel loss to the L2Net CNN architecture results in a compact descriptor named HardNet. It has the same dimensionality as SIFT (128) and shows state-of-art performance in wide baseline stereo, patch verification and instance retrieval benchmarks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Information Processing Systems 30
ISBN
—
ISSN
1049-5258
e-ISSN
1049-5258
Number of pages
12
Pages from-to
4827-4838
Publisher name
Neural Information Processing Systems (NIPS) Foundation
Place of publication
—
Event location
LONG BEACH
Event date
Dec 4, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000452649404087