All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Localization in Static and Dynamic Hearing Scenarios: Utilization of Machine Learning and Binaural Auditory Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312007" target="_blank" >RIV/68407700:21230/17:00312007 - isvavai.cz</a>

  • Result on the web

    <a href="http://radio.feld.cvut.cz/conf/poster/proceedings/Poster_2017/Section_NS/NS_061_Koshkina.pdf" target="_blank" >http://radio.feld.cvut.cz/conf/poster/proceedings/Poster_2017/Section_NS/NS_061_Koshkina.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Localization in Static and Dynamic Hearing Scenarios: Utilization of Machine Learning and Binaural Auditory Model

  • Original language description

    Hearing with both ears, in other words binaural hearing, allows human to localize sound sources in a space. Models of binaural hearing often simulate functions of lateral and medial superior olives (LSO and MSO), but their outputs cannot be in most cases directly mapped to certain azimuths in space. In this paper we present an azimuth classification algorithm, which utilizes both binaural models (LSO and MSO) for preprocessing of a sound signal. From their outputs features are extracted for machine learning algorithms: K-Nearest Neighbors and Artificial Neural Network. The algorithm is trained and tested on speech samples from ITU - T Rec. P501 and NOIZEUS corpora. The success of the K-NN and ANN classifiers is discussed. Both machine learning algorithms give a similar classification error in static and dynamic hearing scenarios. The error s comparable to human psychoacoustical data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the International Student Scientific Conference Poster – 21/2017

  • ISBN

    978-80-01-06153-4

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    Czech Technical University in Prague

  • Place of publication

    Praha

  • Event location

    Praha

  • Event date

    May 23, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article