Asymmetric Feature Maps with Application to Sketch Based Retrieval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312201" target="_blank" >RIV/68407700:21230/17:00312201 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/CVPR.2017.655" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.655</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2017.655" target="_blank" >10.1109/CVPR.2017.655</a>
Alternative languages
Result language
angličtina
Original language name
Asymmetric Feature Maps with Application to Sketch Based Retrieval
Original language description
We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-0457-1
ISSN
1063-6919
e-ISSN
—
Number of pages
9
Pages from-to
6185-6193
Publisher name
IEEE Computer Society Press
Place of publication
—
Event location
Honolulu
Event date
Jul 21, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000418371406030