All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymmetric Feature Maps with Application to Sketch Based Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312201" target="_blank" >RIV/68407700:21230/17:00312201 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CVPR.2017.655" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.655</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2017.655" target="_blank" >10.1109/CVPR.2017.655</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymmetric Feature Maps with Application to Sketch Based Retrieval

  • Original language description

    We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-0457-1

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    6185-6193

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

  • Event location

    Honolulu

  • Event date

    Jul 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418371406030