All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312200" target="_blank" >RIV/68407700:21230/17:00312200 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.105</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >10.1109/CVPR.2017.105</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations

  • Original language description

    Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-0457-1

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    926-935

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

  • Event location

    Honolulu

  • Event date

    Jul 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418371400098