Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312200" target="_blank" >RIV/68407700:21230/17:00312200 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >10.1109/CVPR.2017.105</a>
Alternative languages
Result language
angličtina
Original language name
Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations
Original language description
Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-0457-1
ISSN
1063-6919
e-ISSN
—
Number of pages
10
Pages from-to
926-935
Publisher name
IEEE Computer Society Press
Place of publication
—
Event location
Honolulu
Event date
Jul 21, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000418371400098