Robust data whitening as an iteratively re-weighted least squares problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312642" target="_blank" >RIV/68407700:21230/17:00312642 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-59126-1_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59126-1_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59126-1_20" target="_blank" >10.1007/978-3-319-59126-1_20</a>
Alternative languages
Result language
angličtina
Original language name
Robust data whitening as an iteratively re-weighted least squares problem
Original language description
The entries of high-dimensional measurements, such as image or feature descriptors, are often correlated, which leads to a bias in similarity estimation. To remove the correlation, a linear transformation, called whitening, is commonly used. In this work, we analyze robust estimation of the whitening transformation in the presence of outliers. Inspired by the Iteratively Re-weighted Least Squares approach, we iterate between centering and applying a transformation matrix, a process which is shown to converge to a solution that minimizes the sum of ℓ2 norms. The approach is developed for unsupervised scenarios, but further extend to supervised cases. We demonstrate the robustness of our method to outliers on synthetic 2D data and also show improvements compared to conventional whitening on real data for image retrieval with CNN-based representation. Finally, our robust estimation is not limited to data whitening, but can be used for robust patch rectification, e.g. with MSER features.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Image Analysis
ISBN
978-3-319-59125-4
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
234-247
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Tromso
Event date
Jun 12, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—