All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust data whitening as an iteratively re-weighted least squares problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312642" target="_blank" >RIV/68407700:21230/17:00312642 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-59126-1_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59126-1_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-59126-1_20" target="_blank" >10.1007/978-3-319-59126-1_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust data whitening as an iteratively re-weighted least squares problem

  • Original language description

    The entries of high-dimensional measurements, such as image or feature descriptors, are often correlated, which leads to a bias in similarity estimation. To remove the correlation, a linear transformation, called whitening, is commonly used. In this work, we analyze robust estimation of the whitening transformation in the presence of outliers. Inspired by the Iteratively Re-weighted Least Squares approach, we iterate between centering and applying a transformation matrix, a process which is shown to converge to a solution that minimizes the sum of ℓ2 norms. The approach is developed for unsupervised scenarios, but further extend to supervised cases. We demonstrate the robustness of our method to outliers on synthetic 2D data and also show improvements compared to conventional whitening on real data for image retrieval with CNN-based representation. Finally, our robust estimation is not limited to data whitening, but can be used for robust patch rectification, e.g. with MSER features.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Image Analysis

  • ISBN

    978-3-319-59125-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    234-247

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Tromso

  • Event date

    Jun 12, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article