Torsion and divisibility in finitely generated commutative semirings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315608" target="_blank" >RIV/68407700:21230/17:00315608 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/17:00108050
Result on the web
<a href="http://dx.doi.org/10.1007/s00233-016-9827-4" target="_blank" >http://dx.doi.org/10.1007/s00233-016-9827-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00233-016-9827-4" target="_blank" >10.1007/s00233-016-9827-4</a>
Alternative languages
Result language
angličtina
Original language name
Torsion and divisibility in finitely generated commutative semirings
Original language description
It is conjectured that (additive) divisibility is equivalent to (additive) idempotency in a finitely generated commutative semiring S. In this paper we extend this conjecture to weaker forms of these properties-torsion and almost-divisibility (an element a is an element of S is called almost-divisible in S if there is b is an element of Nsuch that b is divisible in S by infinitely many primes). We show that a one-generated semiring is almost-divisible if and only if it is torsion. In the case of a free commutative semiring F(X) we characterize those elements f is an element of F(X) such that for every epimorphism pi of F(X) torsion and almost-divisibility of pi(f) are equivalent in pi (F(X)).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GP13-29835P" target="_blank" >GP13-29835P: Structure of commutative semirings</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
1432-2137
Volume of the periodical
95
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
293-302
UT code for WoS article
000413680900004
EID of the result in the Scopus database
2-s2.0-84990831269