All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discriminative Correlation Filter with Channel and Spatial Reliability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315732" target="_blank" >RIV/68407700:21230/17:00315732 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CVPR.2017.515" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.515</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2017.515" target="_blank" >10.1109/CVPR.2017.515</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discriminative Correlation Filter with Channel and Spatial Reliability

  • Original language description

    Short-term tracking is an open and challenging problem for which discriminative correlation filters (DCF) have shown excellent performance. We introduce the channel and spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process. The spatial reliability map adjusts the filter support to the part of the object suitable for tracking. This allows tracking of non-rectangular objects as well as extending the search region. Channel reliability reflects the quality of the learned filter and it is used as a feature weighting coefficient in localization. Experimentally, with only two simple standard features, HOGs and Colornames, the novel CSR-DCF method &#x2013; DCF with Channel and Spatial Reliability &#x2013; achieves state-of-the-art results on VOT 2016, VOT 2015 and OTB. The CSR-DCF runs in real-time on a CPU.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-0457-1

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    4847-4856

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

  • Event location

    Honolulu

  • Event date

    Jul 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418371404099