All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00316126" target="_blank" >RIV/68407700:21230/17:00316126 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1215/00127094-2017-0021" target="_blank" >http://dx.doi.org/10.1215/00127094-2017-0021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00127094-2017-0021" target="_blank" >10.1215/00127094-2017-0021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A METRIC INTERPRETATION OF REFLEXIVITY FOR BANACH SPACES

  • Original language description

    We define two metrics d(1), and d(infinity,alpha), on each Schreier family A, delta(alpha), < omega(1), with which we prove the following metric characterization of the reflexivity of a Banach space X: X is reflexive if and only if there is an alpha < omega(1) such that there is no mapping Phi: delta(alpha) -> X for which

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Duke Mathematical Journal

  • ISSN

    0012-7094

  • e-ISSN

    1547-7398

  • Volume of the periodical

    166

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    84

  • Pages from-to

    3001-3084

  • UT code for WoS article

    000414670300001

  • EID of the result in the Scopus database

    2-s2.0-85031736980