On p dependent boundedness of singular integral operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00364813" target="_blank" >RIV/67985840:_____/11:00364813 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00209-009-0654-0" target="_blank" >http://dx.doi.org/10.1007/s00209-009-0654-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-009-0654-0" target="_blank" >10.1007/s00209-009-0654-0</a>
Alternative languages
Result language
angličtina
Original language name
On p dependent boundedness of singular integral operators
Original language description
We study the classical Caldern Zygmund singular integral operator with homogeneous kernel. Suppose that Omega is an integrable function with mean value 0 on S (1). We study the singular integral operator T(Omega)f = p.v f * Omega(x/vertical bar chi vertical bar)/vertical bar chi vertical bar(2). We show that for alpha > 0 the condition vertical bar integral(I) Omega(theta) d theta vertical bar <= C vertical bar log vertical bar vertical bar I vertical bar vertical bar(-1-alpha) (0.1) for all intervals |I| < 1 in S (1) gives L (p) boundedness of T (Omega) in the range vertical bar 1/2-1/p vertical bar < alpha/2(alpha+1). This condition is weaker than the conditions from Grafakos and Stefanov (Indiana Univ Math J 47:455-469, 1998) and Fan et al. (Math Inequal Appl 2:73-81, 1999). We also construct an example of an integrable Omega which satisfies (0.1) such that T (Omega) is not L (p) bounded for vertical bar 1/2-1/p vertical bar > 3 alpha+1/6(alpha+1).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
267
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
931-937
UT code for WoS article
000288261600021
EID of the result in the Scopus database
—