All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Formula for Codensity Monads and Density Comonads

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324212" target="_blank" >RIV/68407700:21230/18:00324212 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10485-018-9530-6" target="_blank" >http://dx.doi.org/10.1007/s10485-018-9530-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10485-018-9530-6" target="_blank" >10.1007/s10485-018-9530-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Formula for Codensity Monads and Density Comonads

  • Original language description

    For a functor F whose codomain is a cocomplete, cowellpowered category K with a generator S we prove that a codensity monad exists iff for every object s in S all natural transformations from K( X, F-) to K( s, F-) form a set. Moreover, the codensity monad has an explicit description using the above natural transformations. Concrete examples are presented, e.g., the codensity monad of the power-set functor P assigns to every set X the set of all nonexpanding endofunctions of PX. Dually, a set-valued functor F is proved to have a density comonad iff all natural transformations from X-F to 2(F) form a set. Moreover, that comonad assigns to X the set of all those transformations. For preimages-preserving endofunctors F of Set we prove that F has a density comonad iff F is accessible.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Categorical Structures

  • ISSN

    0927-2852

  • e-ISSN

    1572-9095

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

    855-872

  • UT code for WoS article

    000445266900003

  • EID of the result in the Scopus database

    2-s2.0-85047662972