Camera Pose Estimation with Unknown Principal Point
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00326730" target="_blank" >RIV/68407700:21230/18:00326730 - isvavai.cz</a>
Result on the web
<a href="http://openaccess.thecvf.com/content_cvpr_2018/html/Larsson_Camera_Pose_Estimation_CVPR_2018_paper.html" target="_blank" >http://openaccess.thecvf.com/content_cvpr_2018/html/Larsson_Camera_Pose_Estimation_CVPR_2018_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2018.00315" target="_blank" >10.1109/CVPR.2018.00315</a>
Alternative languages
Result language
angličtina
Original language name
Camera Pose Estimation with Unknown Principal Point
Original language description
To estimate the 6-DoF extrinsic pose of a pinhole camera with partially unknown intrinsic parameters is a critical sub-problem in structure-from-motion and camera localization. In most of existing camera pose estimation solvers, the principal point is assumed to be in the image center. Unfortunately, this assumption is not always true, especially for asymmetrically cropped images. In this paper, we develop the first exactly minimal solver for the case of unknown principal point and focal length by using four and a half point correspondences (P4.5Pfuv). We also present an extremely fast solver for the case of unknown aspect ratio (P5Pfuva). The new solvers outperform the previous state-of-the-art in terms of stability and speed. Finally, we explore the extremely challenging case of both unknown principal point and radial distortion, and develop the first practical non-minimal solver by using seven point correspondences (P7Pfruv). Experimental results on both simulated data and real Internet images demonstrate the usefulness of our new solvers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF17_050%2F0008025" target="_blank" >EF17_050/0008025: International Mobility of Researchers ? MSCA-IF in CTU</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-6420-9
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
9
Pages from-to
2984-2992
Publisher name
IEEE
Place of publication
Piscataway, NJ
Event location
Salt Lake City
Event date
Jun 19, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000457843603013