All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Relative Pose from a Calibrated and an Uncalibrated Smartphone Image

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362925" target="_blank" >RIV/68407700:21230/22:00362925 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52688.2022.01243" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.01243</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52688.2022.01243" target="_blank" >10.1109/CVPR52688.2022.01243</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Relative Pose from a Calibrated and an Uncalibrated Smartphone Image

  • Original language description

    In this paper, we propose a new minimal and a non-minimal solver for estimating the relative camera pose together with the unknown focal length of the second camera. This configuration has a number of practical benefits, e.g., when processing large-scale datasets. Moreover, it is resistant to the typical degenerate cases of the traditional six-point algorithm. The minimal solver requires four point correspondences and exploits the gravity direction that the built-in IMU of recent smart devices recover. We also propose a linear solver that enables estimating the pose from a larger-than-minimal sample extremely efficiently which then can be improved by, e.g., bundle adjustment. The methods are tested on 35654 image pairs from publicly available real-world and new datasets. When combined with a recent robust estimator, they lead to results superior to the traditional solvers in terms of rotation, translation and focal length accuracy, while being notably faster.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-6946-3

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    12756-12765

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    New Orleans, Louisiana

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000870759105082