Transfer learning for question answering on SQuAD
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00326870" target="_blank" >RIV/68407700:21230/18:00326870 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/18:00326870
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transfer learning for question answering on SQuAD
Original language description
This paper focuses on the benefits of transfer learning on question answering tasks. We show how transfer learning improves the results of state of the art question answering system on evaluation set focused on a specific domain not contained in the training data. We perform several experiments on the Stanford Question Answering Dataset (SQuAD). We use transfer learning approach to retrain model trained with a large amount of generic data on smaller topic specific datasets. We evaluate the change in performance of the system with regards to the size of the new training set and type of data used in training.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Student Scientific Conference Poster – 22/2018
ISBN
978-80-01-06428-3
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
Czech Technical University in Prague
Place of publication
Praha
Event location
Praha
Event date
May 10, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—