Fast registration by boundary sampling and linear programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327728" target="_blank" >RIV/68407700:21230/18:00327728 - isvavai.cz</a>
Result on the web
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Kybic-MICCAI2018.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Kybic-MICCAI2018.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00928-1_88" target="_blank" >10.1007/978-3-030-00928-1_88</a>
Alternative languages
Result language
angličtina
Original language name
Fast registration by boundary sampling and linear programming
Original language description
We address the problem of image registration when speed is more important than accuracy. We present a series of simplification and approximations applicable to almost any pixel-based image similarity criterion. We first sample the image at a set of sparse keypoints in a direction normal to image edges and then create a piecewise linear convex approximation of the individual contributions. We obtain a linear program for which a global optimum can be found very quickly by standard algorithms. The linear program formulation also allows for an easy addition of regularization and trust-region bounds. We have tested the approach for affine and B-spline transformation representation but any linear model can be used. Larger deformations can be handled by multiresolution. We show that our method is much faster than pixel- based registration, with only a small loss of accuracy. In comparison to standard keypoint based registration, our method is applicable even if individual keypoints cannot be reliably identiffied and matched.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-15361S" target="_blank" >GA17-15361S: Learning local concepts from global training data for biomedical image segmentation and classification</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Medical Image Computing and Computer Assisted Intervention, Part I
ISBN
978-3-030-00927-4
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
783-791
Publisher name
Springer, Cham
Place of publication
—
Event location
Granada
Event date
Sep 16, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—