The role of α″ orthorhombic phase content on the tenacity and fracture toughness behavior of Ti-22Nb-10Zr coating used in the design of long-term medical implants
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00323323" target="_blank" >RIV/68407700:21230/19:00323323 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00323323
Result on the web
<a href="https://doi.org/10.1016/j.apsusc.2018.09.017" target="_blank" >https://doi.org/10.1016/j.apsusc.2018.09.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2018.09.017" target="_blank" >10.1016/j.apsusc.2018.09.017</a>
Alternative languages
Result language
angličtina
Original language name
The role of α″ orthorhombic phase content on the tenacity and fracture toughness behavior of Ti-22Nb-10Zr coating used in the design of long-term medical implants
Original language description
Tenacity and fracture toughness of a novel β/α″ Ti-22Nb-10Zr (wt.%) coating processed by magnetron sputtering were modified as a result of the martensitic transformation (β -> α″) activated by the presence of compressive residual stresses when the coating deposition is performed at high bias voltage values. Mechanical properties, such as hardness, H, and Young's modulus, E, values, and therefore elastoplastic response of the coating were characterized through H/E, and H3/E2 ratios as a function of the extent of the martensitic transformation. These ratios were correlated to the elastic response and to the resistance to plastic deformation of a surface subjected to sliding mechanical contact, respectively. The usefulness of both ratios to design “hard and tough” coatings, suitable for enhancing of its wear resistance, is compared with the tenacity, G, the semi-quantitative, FT, and the quantitative, KI, fracture toughness values obtained from nano-scratch characterization. Results show that Ti-22Nb-10Zr (wt.%) coating with the highest and lowest hardness and Young's modulus values, and therefore the highest H/E and H3/E2, has the highest cracking resistance and fracture toughness. Under linearly ramped loading from 0.1 to 5 and 100 mN it was impossible to produce fracture of the coating when it was deposited with a bias voltage of -63 V. In return, the coating deposited with a bias voltage of -148 V shows an almost complete elastic recovery until the moment of its fracture and delamination, which is an evidence of its high tenacity and superior fracture toughness. The KI value is ~21 MPa*m1/2, which is higher than typical values of bio-ceramics (Al2O3 and ZrO2) used in medical applications, demonstrating that this coating could be used in components subjected to high wear and cyclic impacts, e.g. on femoral heads in artificial hip joints.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20506 - Coating and films
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Surface Science
ISSN
0169-4332
e-ISSN
1873-5584
Volume of the periodical
464
Issue of the periodical within the volume
January
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
328-336
UT code for WoS article
000447744200039
EID of the result in the Scopus database
2-s2.0-85053317840