Leveraging Outdoor Webcams for Local Descriptor Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00328313" target="_blank" >RIV/68407700:21230/19:00328313 - isvavai.cz</a>
Result on the web
<a href="http://diglib.tugraz.at/download.php?id=5c5941d91cdd5&location=medra" target="_blank" >http://diglib.tugraz.at/download.php?id=5c5941d91cdd5&location=medra</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3217/978-3-85125-652-9-06" target="_blank" >10.3217/978-3-85125-652-9-06</a>
Alternative languages
Result language
angličtina
Original language name
Leveraging Outdoor Webcams for Local Descriptor Learning
Original language description
We present AMOS Patches, a large set of image cut-outs, intended primarily for the robustification of trainable local feature descriptors to illumination and appearance changes. Images contributing to AMOS Patches originate from the AMOS dataset of recordings from a large set of outdoor webcams. The semiautomatic method used to generate AMOS Patches is described. It includes camera selection, viewpoint clustering and patch selection. For training, we provide both the registered full source images as well as the patches. A new descriptor, trained on the AMOS Patches and 6Brown datasets, is introduced. It achieves state-of-the-art in matching under illumination changes onstandard benchmarks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 24th Computer Vision Winter Workshop
ISBN
978-3-85125-652-9
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
51-60
Publisher name
Verlag der TU Graz
Place of publication
Graz
Event location
Stift Vorau
Event date
Feb 6, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—