All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335541" target="_blank" >RIV/68407700:21230/19:00335541 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV.2019.00979" target="_blank" >https://doi.org/10.1109/ICCV.2019.00979</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV.2019.00979" target="_blank" >10.1109/ICCV.2019.00979</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions

  • Original language description

    Image retrieval under varying illumination conditions, such as day and night images, is addressed by image preprocessing, both hand-crafted and learned. Prior to extracting image descriptors by a convolutional neural network, images are photometrically normalised in order to reduce the descriptor sensitivity to illumination changes. We propose a learnable normalisation based on the U-Net architecture, which is trained on a combination of single-camera multi-exposure images and a newly constructed collection of similar views of landmarks during day and night. We experimentally show that both hand-crafted normalisation based on local histogram equalisation and the learnable normalisation outperform standard approaches in varying illumination conditions, while staying on par with the state-of-the-art methods on daylight illumination benchmarks, such as Oxford or Paris datasets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-23165S" target="_blank" >GA19-23165S: Generalized Image Retrieval and Relation Discovery</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE International Conference on Computer Vision (ICCV 2019)

  • ISBN

    978-1-7281-4803-8

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    9

  • Pages from-to

    9695-9703

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Seoul

  • Event date

    Oct 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article