Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370501" target="_blank" >RIV/68407700:21230/23:00370501 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICCV51070.2023.01024" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01024" target="_blank" >10.1109/ICCV51070.2023.01024</a>
Alternative languages
Result language
angličtina
Original language name
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
Original language description
Image retrieval methods based on CNN descriptors rely on metric learning from a large number of diverse examples of positive and negative image pairs. Domains, such as night-time images, with limited availability and variability of training data suffer from poor retrieval performance even with methods performing well on standard benchmarks. We propose to train a GAN-based synthetic-image generator, translating available day-time image examples into night images. Such a generator is used in metric learning as a form of augmentation, supplying training data to the scarce domain. Various types of generators are evaluated and analyzed. We contribute with a novel light-weight GAN architecture that enforces the consistency between the original and translated image through edge consistency. The proposed architecture also allows a simultaneous training of an edge detector that operates on both night and day images. To further increase the variability in the training examples and to maximize the generalization of the trained model, we propose a novel method of diverse anchor mining. The proposed method improves over the state-of-the-art results on a standard Tokyo 24/7 day-night retrieval benchmark while preserving the performance on Oxford and Paris datasets. This is achieved without the need of training image pairs of matching day and night images. The source code is available at https://github.com/mohwald/gandtr.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Number of pages
11
Pages from-to
11119-11129
Publisher name
IEEE
Place of publication
Piscataway
Event location
Paris
Event date
Oct 2, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001169499003054