Inner approximations of the maximal positively invariant set for polynomial dynamical systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331573" target="_blank" >RIV/68407700:21230/19:00331573 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/LCSYS.2019.2916256" target="_blank" >https://doi.org/10.1109/LCSYS.2019.2916256</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LCSYS.2019.2916256" target="_blank" >10.1109/LCSYS.2019.2916256</a>
Alternative languages
Result language
angličtina
Original language name
Inner approximations of the maximal positively invariant set for polynomial dynamical systems
Original language description
The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Control Systems Letters
ISSN
2475-1456
e-ISSN
2475-1456
Volume of the periodical
3
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
733-738
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85065970797