All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inner approximations of the maximal positively invariant set for polynomial dynamical systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331573" target="_blank" >RIV/68407700:21230/19:00331573 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/LCSYS.2019.2916256" target="_blank" >https://doi.org/10.1109/LCSYS.2019.2916256</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LCSYS.2019.2916256" target="_blank" >10.1109/LCSYS.2019.2916256</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inner approximations of the maximal positively invariant set for polynomial dynamical systems

  • Original language description

    The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Control Systems Letters

  • ISSN

    2475-1456

  • e-ISSN

    2475-1456

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    733-738

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85065970797