All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stochastic Normalizations as Bayesian Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332292" target="_blank" >RIV/68407700:21230/19:00332292 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-20890-5_30" target="_blank" >http://dx.doi.org/10.1007/978-3-030-20890-5_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-20890-5_30" target="_blank" >10.1007/978-3-030-20890-5_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stochastic Normalizations as Bayesian Learning

  • Original language description

    In this work we investigate the reasons why Batch Normalization (BN) improves the generalization performance of deep networks. We argue that one major reason, distinguishing it from data-independent normalization methods, is randomness of batch statistics. This randomness appears in the parameters rather than in activations and admits an interpretation as a practical Bayesian learning. We apply this idea to other (deterministic) normalization techniques that are oblivious to the batch size. We show that their generalization performance can be improved significantly by Bayesian learning of the same form. We obtain test performance comparable to BN and, at the same time, better validation losses suitable for subsequent output uncertainty estimation through approximate Bayesian posterior.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACCV 2018: Proceedings of the 14th Asian Conference on Computer Vision, Part II

  • ISBN

    978-3-030-20889-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    17

  • Pages from-to

    463-479

  • Publisher name

    Springer

  • Place of publication

  • Event location

    Perth

  • Event date

    Dec 4, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000492902300030