All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Visual Data Simulation for Deep Learning in Robot Manipulation Tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332335" target="_blank" >RIV/68407700:21230/19:00332335 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/19:00332335

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >https://doi.org/10.1007/978-3-030-14984-0_29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >10.1007/978-3-030-14984-0_29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Visual Data Simulation for Deep Learning in Robot Manipulation Tasks

  • Original language description

    This paper introduces the usage of simulated images for training convolutional neural networks for object recognition and localization in the task of random bin picking. For machine learning applications, a limited amount of real world image data that can be captured and labeled for training and testing purposes is a big issue. In this paper, we focus on the use of realistic simulation of image data for training convolutional neural networks to be able to estimate the pose of an object. We can systematically generate varying camera viewpoint datasets with a various pose of an object and lighting conditions. After successful training and testing the neural network, we compare the performance of network trained on simulated images and images from a real camera capturing the physical object. The usage of the simulated data can speed up the complex and time-consuming task of gathering training data as well as increase robustness of object recognition by generating a bigger amount of data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Modelling and Simulation for Autonomous Systems (MESAS 2018)

  • ISBN

    978-3-030-14983-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    402-411

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Praha

  • Event date

    Oct 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article