Visual Data Simulation for Deep Learning in Robot Manipulation Tasks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332335" target="_blank" >RIV/68407700:21230/19:00332335 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/19:00332335
Result on the web
<a href="https://doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >https://doi.org/10.1007/978-3-030-14984-0_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14984-0_29" target="_blank" >10.1007/978-3-030-14984-0_29</a>
Alternative languages
Result language
angličtina
Original language name
Visual Data Simulation for Deep Learning in Robot Manipulation Tasks
Original language description
This paper introduces the usage of simulated images for training convolutional neural networks for object recognition and localization in the task of random bin picking. For machine learning applications, a limited amount of real world image data that can be captured and labeled for training and testing purposes is a big issue. In this paper, we focus on the use of realistic simulation of image data for training convolutional neural networks to be able to estimate the pose of an object. We can systematically generate varying camera viewpoint datasets with a various pose of an object and lighting conditions. After successful training and testing the neural network, we compare the performance of network trained on simulated images and images from a real camera capturing the physical object. The usage of the simulated data can speed up the complex and time-consuming task of gathering training data as well as increase robustness of object recognition by generating a bigger amount of data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Modelling and Simulation for Autonomous Systems (MESAS 2018)
ISBN
978-3-030-14983-3
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
402-411
Publisher name
Springer International Publishing AG
Place of publication
Cham
Event location
Praha
Event date
Oct 17, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—