All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation Environment for Neural Network Dataset Generation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10251227" target="_blank" >RIV/61989100:27230/22:10251227 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-98260-7_20" target="_blank" >10.1007/978-3-030-98260-7_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation Environment for Neural Network Dataset Generation

  • Original language description

    We present a simulation setup in the robot simulation software CoppeliaSim which is used for a synthetic dataset generation for training the neural network. In the simulator we can generate either color and depth images which can be tuned according to the real cameras mounted to the robot or robotic workplace. Vision sensors capture the simulated scene which contains different environment features, obstacles and objects of interest which can be labeled automatically with another filtering vision sensor. Except static environment which can be imported in case of known setup or generated based on height-field or simple objects. We can simulate randomly or with a specific pose oriented and positioned objects which may appear in the field of view of the robot. As an output the system produce RGB or depth information which is stored as a RGB or a gray-scale image or a combined RGBA image including the RGB data extended by depth data stored in the alpha channel. Second product of the system is a label describing different detectable classes for the neural network. The simulator is able to generate large datasets in a short period of time and produce a highly customized learning base for the neural network.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 13207

  • ISBN

    978-3-030-98259-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    322-332

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Řím

  • Event date

    Oct 13, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000787774900020