Simulation Environment for Neural Network Dataset Generation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10251227" target="_blank" >RIV/61989100:27230/22:10251227 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-98260-7_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-98260-7_20" target="_blank" >10.1007/978-3-030-98260-7_20</a>
Alternative languages
Result language
angličtina
Original language name
Simulation Environment for Neural Network Dataset Generation
Original language description
We present a simulation setup in the robot simulation software CoppeliaSim which is used for a synthetic dataset generation for training the neural network. In the simulator we can generate either color and depth images which can be tuned according to the real cameras mounted to the robot or robotic workplace. Vision sensors capture the simulated scene which contains different environment features, obstacles and objects of interest which can be labeled automatically with another filtering vision sensor. Except static environment which can be imported in case of known setup or generated based on height-field or simple objects. We can simulate randomly or with a specific pose oriented and positioned objects which may appear in the field of view of the robot. As an output the system produce RGB or depth information which is stored as a RGB or a gray-scale image or a combined RGBA image including the RGB data extended by depth data stored in the alpha channel. Second product of the system is a label describing different detectable classes for the neural network. The simulator is able to generate large datasets in a short period of time and produce a highly customized learning base for the neural network.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 13207
ISBN
978-3-030-98259-1
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
11
Pages from-to
322-332
Publisher name
Springer
Place of publication
Cham
Event location
Řím
Event date
Oct 13, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000787774900020