All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Autoencoders Covering Space as a Life-Long Classifier

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332666" target="_blank" >RIV/68407700:21230/19:00332666 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-19642-4_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19642-4_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-19642-4_27" target="_blank" >10.1007/978-3-030-19642-4_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Autoencoders Covering Space as a Life-Long Classifier

  • Original language description

    A life-long classifier that learns incrementally has many challenges such as concept drift, when the class changes in time, and catastrophic forgetting when the earlier learned knowledge is lost. Many successful connectionist solutions are based on an idea that new data are learned only in a part of a network that is relevant to the new data. We leverage this idea and propose a novel method for learning an ensemble of specialized autoencoders. We interpret autoencoders as manifolds that can be trained to contain or exclude given points from the input space. This manifold manipulation allows us to implement a classifier that can suppress catastrophic forgetting and adapt to concept drift. The proposed algorithm is evaluated on an incremental version of the XOR problem and on an incremental version of the MNIST classification where we achieved 0.9 accuracy which is a significant improvement over the previously published results

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18858S" target="_blank" >GA18-18858S: Robotic Lifelong Learning of Multi-legged Robot Locomotion Control in Autonomous Data Collection Missions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization

  • ISBN

    978-3-030-19641-7

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    271-281

  • Publisher name

    Springer-VDI-Verlag

  • Place of publication

    Düsseldorf

  • Event location

    Barcelona

  • Event date

    Jun 26, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article