All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Basic Evaluation Scenarios for Incrementally Trained Classifiers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336159" target="_blank" >RIV/68407700:21230/19:00336159 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-30484-3_41" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30484-3_41</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30484-3_41" target="_blank" >10.1007/978-3-030-30484-3_41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Basic Evaluation Scenarios for Incrementally Trained Classifiers

  • Original language description

    Evaluation of incremental classification algorithms is a complex task because there are many aspects to evaluate. Besides the aspects such as accuracy and generalization that are usually evaluated in the context of classification, we also need to assess how the algorithm handles two main challenges of the incremental learning: the concept drift and the catastrophic forgetting. However, only catastrophic forgetting is evaluated by the current methodology, where the classifier is evaluated in two scenarios for class addition and expansion. We generalize the methodology by proposing two new scenarios of incremental learning for class inclusion and separation that evaluate the handling of the concept drift. We demonstrate the proposed methodology on the evaluation of three different incremental classifiers, where we show that the proposed methodology provides a more complete and finer evaluation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18858S" target="_blank" >GA18-18858S: Robotic Lifelong Learning of Multi-legged Robot Locomotion Control in Autonomous Data Collection Missions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning

  • ISBN

    978-3-030-30483-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    507-517

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Munich

  • Event date

    Sep 17, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article