Basic Evaluation Scenarios for Incrementally Trained Classifiers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336159" target="_blank" >RIV/68407700:21230/19:00336159 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-30484-3_41" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30484-3_41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30484-3_41" target="_blank" >10.1007/978-3-030-30484-3_41</a>
Alternative languages
Result language
angličtina
Original language name
Basic Evaluation Scenarios for Incrementally Trained Classifiers
Original language description
Evaluation of incremental classification algorithms is a complex task because there are many aspects to evaluate. Besides the aspects such as accuracy and generalization that are usually evaluated in the context of classification, we also need to assess how the algorithm handles two main challenges of the incremental learning: the concept drift and the catastrophic forgetting. However, only catastrophic forgetting is evaluated by the current methodology, where the classifier is evaluated in two scenarios for class addition and expansion. We generalize the methodology by proposing two new scenarios of incremental learning for class inclusion and separation that evaluate the handling of the concept drift. We demonstrate the proposed methodology on the evaluation of three different incremental classifiers, where we show that the proposed methodology provides a more complete and finer evaluation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-18858S" target="_blank" >GA18-18858S: Robotic Lifelong Learning of Multi-legged Robot Locomotion Control in Autonomous Data Collection Missions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning
ISBN
978-3-030-30483-6
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
507-517
Publisher name
Springer
Place of publication
Basel
Event location
Munich
Event date
Sep 17, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—