All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Explicit Spatial Encoding for Deep Local Descriptors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00333112" target="_blank" >RIV/68407700:21230/19:00333112 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/8954243/keywords#keywords" target="_blank" >https://ieeexplore.ieee.org/document/8954243/keywords#keywords</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2019.00962" target="_blank" >10.1109/CVPR.2019.00962</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Explicit Spatial Encoding for Deep Local Descriptors

  • Original language description

    We propose a kernelized deep local-patch descriptor based on efficient match kernels of neural network activations. Response of each receptive field is encoded together with its spatial location using explicit feature maps. Two location parametrizations, Cartesian and polar, are used to provide robustness to a different types of canonical patch misalignment. Additionally, we analyze how the conventional architecture, i.e. a fully connected layer attached after the convolutional part, encodes responses in a spatially variant way. In contrary, explicit spatial encoding is used in our descriptor, whose potential applications are not limited to local-patches. We evaluate the descriptor on standard benchmarks. Both versions, encoding 32x32 or 64x64 patches, consistently outperform all other methods on all benchmarks. The number of parameters of the model is independent of the input patch resolution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-3293-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    9386-9395

  • Publisher name

    IEEE

  • Place of publication

  • Event location

    Long Beach

  • Event date

    Jun 15, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article