All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flexible ammonia gas sensor based on polyaniline

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335550" target="_blank" >RIV/68407700:21230/19:00335550 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/10467/87110" target="_blank" >http://hdl.handle.net/10467/87110</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flexible ammonia gas sensor based on polyaniline

  • Original language description

    In this paper we prepared flexible ammonia (NH3) gas sensor based on polyaniline (PAni) as an active sensing thin film layer. The sensors function was based on chemiresistive principle with thin film deposited on top of interdigitated electrodes. We measured the change in resistance of the thin film under gas exposure. The PET based foil has been used as the sensors substrate. The Interdigitated electrodes (IDE) has been printed with Fujifilm Dimatix DMP 2831 inkjet printer by nanocoloid silver ink. The active thin film has been prepared by drop casting method from polyaniline nanoparticle dispersion. The morphology of thin films surface was characterized by atomic force microscopy (AFM). The sensors response was investigated in a gas chamber and the gas flow was controlled by mass flow meters. The sensitivity towards various gases under different concentration in synthetic air has been tested. The tested gases were NH3, NO2, CO2 and CO. The measurement of the sensors response to the different levels of humidity was also conducted. All the measurements were performed at room temperature, which is important feature for the sensor to be able to operate in hazardous environment and it facilitates low-power operation of the sensor as well. We also observed the long-term stability of the sensors response, as well as the effect of bending of the sensing platform on the sensors response and stability.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10TH ANNIVERSARY INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2018)

  • ISBN

    978-80-87294-89-5

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    272-276

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000513131900047