All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A wide class of analytical solutions of the Webster equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340216" target="_blank" >RIV/68407700:21230/20:00340216 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jsv.2019.115169" target="_blank" >https://doi.org/10.1016/j.jsv.2019.115169</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jsv.2019.115169" target="_blank" >10.1016/j.jsv.2019.115169</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A wide class of analytical solutions of the Webster equation

  • Original language description

    This paper aims at presenting closed-form general analytical solutions of the Webster equation describing plane elastic or acoustic waves. The considered radius functions of nonuniform cross-sectioned rods or ducts are based on the triconfluent Heun functions and contain some optional parameters enabling us to set various profiles of the radius functions in a relatively wide range, while it is possible to employ the presented exact general analytical solution of the Webster equation for all selected profiles. If the radius functions are predetermined, then the derived general analytical solution can also be employed for their triconfluent Heun approximations, including certain polynomial ones. The applicability and correctness of the derived analytical solutions are demonstrated by calculations of natural frequencies and mode shapes for representative radius functions while the results based on approximate analytical solutions are verified numerically. (C) 2019 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10307 - Acoustics

Result continuities

  • Project

    <a href="/en/project/GA18-24954S" target="_blank" >GA18-24954S: Propagation of acoustic waves through phononic materials and structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Sound and Vibration

  • ISSN

    0022-460X

  • e-ISSN

    1095-8568

  • Volume of the periodical

    469

  • Issue of the periodical within the volume

    115169

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000508556500013

  • EID of the result in the Scopus database

    2-s2.0-85077331020