All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A new class of approximate analytical solutions of the Pridmore-Brown equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359446" target="_blank" >RIV/68407700:21230/22:00359446 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/5.0098473" target="_blank" >https://doi.org/10.1063/5.0098473</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0098473" target="_blank" >10.1063/5.0098473</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A new class of approximate analytical solutions of the Pridmore-Brown equation

  • Original language description

    There is only a limited amount of known analytical solutions to the Pridmore-Brown equation, mostly employing asymptotic behavior for a certain frequency limit and specifically chosen flow profiles. In this paper, we show the possibility of transformation of the Pridmore-Brown equation into the Schrödinger-like equation for the case of two-dimensional homentropic mean flow without critical layers. The corresponding potential that depends on the mean flow profile can then be approximated by a quartic polynomial, leading to a triconfluent Heun equation whose solution based on the triconfluent Heun functions is generally known. The quality of this approximation procedure is presented for the case of symmetric polynomial flow profiles for various values of polynomial order and the Mach number. A more detailed example is then shown for a quadratic mean flow profile, where the solution is accurate up to the third order of the Mach number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10307 - Acoustics

Result continuities

  • Project

    <a href="/en/project/GA22-33896S" target="_blank" >GA22-33896S: Advanced methods of sound and elastic wave field control: acoustic black holes, metamaterials and functionally graded materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000844402500006

  • EID of the result in the Scopus database

    2-s2.0-85137102434