All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342650" target="_blank" >RIV/68407700:21230/20:00342650 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR42600.2020.00792" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.00792</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR42600.2020.00792" target="_blank" >10.1109/CVPR42600.2020.00792</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems

  • Original language description

    It has been proposed by many researchers that combining deep neural networks with graphical models can create more efficient and better regularized composite models. The main difficulties in implementing this in practice are associated with a discrepancy in suitable learning objectives as well as with the necessity of approximations for the inference. In this work we take one of the simplest inference methods, a truncated max-product Belief Propagation, and add what is necessary to make it a proper component of a deep learning model: connect it to learning formulations with losses on marginals and compute the backprop operation. This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs), allowing us to design a hierarchical model composing BP inference and CNNs at different scale levels. The model is applicable to a range of dense prediction problems, is well-Trainable and provides parameter-efficient and robust solutions in stereo, flow and semantic segmentation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF18_070%2F0010457" target="_blank" >EF18_070/0010457: International Mobility of Researchers MSCA-IF II in CTU in Prague</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-7169-2

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    7897-7906

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Seattle

  • Event date

    Jun 13, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article