All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Coordinate-Wise Minimization Applied to General Convex Optimization Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343072" target="_blank" >RIV/68407700:21230/20:00343072 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.procs.2020.09.142" target="_blank" >https://doi.org/10.1016/j.procs.2020.09.142</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.procs.2020.09.142" target="_blank" >10.1016/j.procs.2020.09.142</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Coordinate-Wise Minimization Applied to General Convex Optimization Problems

  • Original language description

    In this paper, we theoretically analyze principal properties of coordinate-wise minimization and we answer a few open questions related to it. In particular, we show that for minimizing any differentiable convex function on a given convex polyhedron, there exists a finite set of directions determined only by the polyhedron such that any local minimum with respect to these directions is a global minimum. We prove that the set of directions has a `nice’ structure for polyhedra defined by a k-regular matrix, which is a generalization of total unimodularity. We proceed to show that for some simple polyhedra, the number of these directions is polynomial, which subsumes already existing algorithms. We prove that the main result can not be extended for the case when the polyhedron is not known in advance or if the optimization is performed over a general convex set.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-09967S" target="_blank" >GA19-09967S: Compositional Architectures for Pattern Recognition</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES2020

  • ISBN

  • ISSN

    1877-0509

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1328-1337

  • Publisher name

    Elsevier B.V.

  • Place of publication

    Amsterdam

  • Event location

    Verona

  • Event date

    Sep 16, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article