An Eberhard-Like Theorem for Pentagons and Heptagons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051751" target="_blank" >RIV/00216208:11320/10:10051751 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An Eberhard-Like Theorem for Pentagons and Heptagons
Original language description
Eberhard proved that for every sequence $(p_k), 3le kle r, kne 6$ of non-negative integers satisfying Euler's formula $sum_{kge3} (6-k) p_k = 12$, there are infinitely many values $p_6$ such that there exists a simple convex polyhedron having precisely $p_k$ faces of size $k$ for every $kge3$, where $p_k=0$ if $k}r$. In this paper we prove a similar statement when non-negative integers $p_k$ are given for $3le kle r$, except for $k=5$ and $k=7$ (but including $p_6$). We prove that there are infinitely many values $p_5,p_7$ such that there exists a simple convex polyhedron having precisely $p_k$ faces of size $k$ for every $kge3$. We derive an extension to arbitrary closed surfaces, yielding maps of arbitrarily high face-width. Our proof suggests a general method for obtaining results of this kind.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
—
UT code for WoS article
000282700100015
EID of the result in the Scopus database
—