All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unit Propagation by Means of Coordinate-Wise Minimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345948" target="_blank" >RIV/68407700:21230/20:00345948 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-64583-0_60" target="_blank" >https://doi.org/10.1007/978-3-030-64583-0_60</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-64583-0_60" target="_blank" >10.1007/978-3-030-64583-0_60</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unit Propagation by Means of Coordinate-Wise Minimization

  • Original language description

    We present a novel theoretical result concerning the applicability of coordinate-wise minimization on the dual problem of linear programming (LP) relaxation of weighted partial Max-SAT that shows that every fixed point of this procedure defines a feasible primal solution. In addition, this primal solution corresponds to the result of a certain propagation rule applicable to weighted Max-SAT. Moreover, we analyze the particular case of LP relaxation of SAT and observe that coordinate-wise minimization on the dual problem resembles unit propagation and also has the same time complexity as a naive unit propagation algorithm. We compare our theoretical results with max-sum diffusion which is a coordinate-wise minimization algorithm that is used to optimize the dual of the LP relaxation of the Max-Sum problem and can in fact perform a different kind of constraint propagation, namely deciding whether a given constraint satisfaction problem (CSP) has non-empty arc consistency closure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-09967S" target="_blank" >GA19-09967S: Compositional Architectures for Pattern Recognition</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning, Optimization, and Data Science

  • ISBN

    978-3-030-64582-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    688-699

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Basel

  • Event location

    Certosa di Pontignano, Siena

  • Event date

    Jul 19, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article