Unit Propagation by Means of Coordinate-Wise Minimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345948" target="_blank" >RIV/68407700:21230/20:00345948 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-64583-0_60" target="_blank" >https://doi.org/10.1007/978-3-030-64583-0_60</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-64583-0_60" target="_blank" >10.1007/978-3-030-64583-0_60</a>
Alternative languages
Result language
angličtina
Original language name
Unit Propagation by Means of Coordinate-Wise Minimization
Original language description
We present a novel theoretical result concerning the applicability of coordinate-wise minimization on the dual problem of linear programming (LP) relaxation of weighted partial Max-SAT that shows that every fixed point of this procedure defines a feasible primal solution. In addition, this primal solution corresponds to the result of a certain propagation rule applicable to weighted Max-SAT. Moreover, we analyze the particular case of LP relaxation of SAT and observe that coordinate-wise minimization on the dual problem resembles unit propagation and also has the same time complexity as a naive unit propagation algorithm. We compare our theoretical results with max-sum diffusion which is a coordinate-wise minimization algorithm that is used to optimize the dual of the LP relaxation of the Max-Sum problem and can in fact perform a different kind of constraint propagation, namely deciding whether a given constraint satisfaction problem (CSP) has non-empty arc consistency closure.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-09967S" target="_blank" >GA19-09967S: Compositional Architectures for Pattern Recognition</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Machine Learning, Optimization, and Data Science
ISBN
978-3-030-64582-3
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
688-699
Publisher name
Springer Nature Switzerland AG
Place of publication
Basel
Event location
Certosa di Pontignano, Siena
Event date
Jul 19, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—