All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounding Linear Programs by Constraint Propagation: Application to Max-SAT

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343057" target="_blank" >RIV/68407700:21230/20:00343057 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-58475-7_11" target="_blank" >https://doi.org/10.1007/978-3-030-58475-7_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58475-7_11" target="_blank" >10.1007/978-3-030-58475-7_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounding Linear Programs by Constraint Propagation: Application to Max-SAT

  • Original language description

    The Virtual Arc Consistency (VAC) algorithm by Cooper et al. is a soft local consistency technique that computes, in linear space, a bound on the basic LP relaxation of the Weighted CSP (WCSP). We generalize this technique by replacing arc consistency with a (problem-dependent) constraint propagation in a system of linear inequalities over the reals. When propagation detects infeasibility, the infeasibility certificate (a solution to the alternative system in Farkas’ lemma) provides a dual improving direction. We illustrate this approach on the LP relaxation of Weighted Max-SAT. We show in experiments that the obtained bounds are often not far from global LP optima and we prove that they are exact for known tractable subclasses of Weighted Max-SAT.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Principles and Practice of Constraint Programming

  • ISBN

    978-3-030-58474-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    17

  • Pages from-to

    177-193

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Basel

  • Event location

    Louvain-la-Neuve

  • Event date

    Sep 7, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article