Bounding Linear Programs by Constraint Propagation: Application to Max-SAT
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343057" target="_blank" >RIV/68407700:21230/20:00343057 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-58475-7_11" target="_blank" >https://doi.org/10.1007/978-3-030-58475-7_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58475-7_11" target="_blank" >10.1007/978-3-030-58475-7_11</a>
Alternative languages
Result language
angličtina
Original language name
Bounding Linear Programs by Constraint Propagation: Application to Max-SAT
Original language description
The Virtual Arc Consistency (VAC) algorithm by Cooper et al. is a soft local consistency technique that computes, in linear space, a bound on the basic LP relaxation of the Weighted CSP (WCSP). We generalize this technique by replacing arc consistency with a (problem-dependent) constraint propagation in a system of linear inequalities over the reals. When propagation detects infeasibility, the infeasibility certificate (a solution to the alternative system in Farkas’ lemma) provides a dual improving direction. We illustrate this approach on the LP relaxation of Weighted Max-SAT. We show in experiments that the obtained bounds are often not far from global LP optima and we prove that they are exact for known tractable subclasses of Weighted Max-SAT.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Principles and Practice of Constraint Programming
ISBN
978-3-030-58474-0
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
17
Pages from-to
177-193
Publisher name
Springer Nature Switzerland AG
Place of publication
Basel
Event location
Louvain-la-Neuve
Event date
Sep 7, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—