All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linearity of Maps on Banach and Operator Algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346262" target="_blank" >RIV/68407700:21230/20:00346262 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1134/S199508022003018X" target="_blank" >https://doi.org/10.1134/S199508022003018X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S199508022003018X" target="_blank" >10.1134/S199508022003018X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linearity of Maps on Banach and Operator Algebras

  • Original language description

    The paper deals with quasi linear maps on two by two matrices over Banach and $$C^{ast}$$-algebras. Let $$varphi:Ato X$$ be a homogeneous map between Banach algebra $$A$$ and a linear space $$X$$. Let us take its amplification $$psi=varphi^{(2)}$$ to two by two matrix structure $$M_{2}(A)$$ over $$A$$. If $$psi(x+x^{2})=psi(x)+psi(x^{2})$$ for all $$x$$, then $$varphi$$ is linear. Ramifications for self adjoint parts of Banach $$ast$$-algebras and $$C^{ast}$$-algebras as well applications to Mackey–Gleason problem are given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lobachevskii Journal of Mathematics

  • ISSN

    1995-0802

  • e-ISSN

    1818-9962

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    435-439

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85088363711