Linearity of Maps on Banach and Operator Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346262" target="_blank" >RIV/68407700:21230/20:00346262 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1134/S199508022003018X" target="_blank" >https://doi.org/10.1134/S199508022003018X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S199508022003018X" target="_blank" >10.1134/S199508022003018X</a>
Alternative languages
Result language
angličtina
Original language name
Linearity of Maps on Banach and Operator Algebras
Original language description
The paper deals with quasi linear maps on two by two matrices over Banach and $$C^{ast}$$-algebras. Let $$varphi:Ato X$$ be a homogeneous map between Banach algebra $$A$$ and a linear space $$X$$. Let us take its amplification $$psi=varphi^{(2)}$$ to two by two matrix structure $$M_{2}(A)$$ over $$A$$. If $$psi(x+x^{2})=psi(x)+psi(x^{2})$$ for all $$x$$, then $$varphi$$ is linear. Ramifications for self adjoint parts of Banach $$ast$$-algebras and $$C^{ast}$$-algebras as well applications to Mackey–Gleason problem are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lobachevskii Journal of Mathematics
ISSN
1995-0802
e-ISSN
1818-9962
Volume of the periodical
41
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
435-439
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85088363711