On free completely iterative algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346319" target="_blank" >RIV/68407700:21230/20:00346319 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.CSL.2020.7" target="_blank" >https://doi.org/10.4230/LIPIcs.CSL.2020.7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CSL.2020.7" target="_blank" >10.4230/LIPIcs.CSL.2020.7</a>
Alternative languages
Result language
angličtina
Original language name
On free completely iterative algebras
Original language description
For every finitary set functor F we demonstrate that free algebras carry a canonical partial order. In case F is bicontinuous, we prove that the cpo obtained as the conservative completion of the free algebra is the free completely iterative algebra. Moreover, the algebra structure of the latter is the unique continuous extension of the algebra structure of the free algebra. For general finitary functors the free algebra and the free completely iterative algebra are proved to be posets sharing the same conservative completion. And for every recursive equation in the free completely iterative algebra the solution is obtained as the join of an ω-chain of approximate solutions in the free algebra.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-132-0
ISSN
1868-8969
e-ISSN
—
Number of pages
21
Pages from-to
1-21
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Barcelona
Event date
Dec 13, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—