All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Make E Smart Again (Short Paper)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346612" target="_blank" >RIV/68407700:21230/20:00346612 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/20:00346612

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-51054-1_26" target="_blank" >https://doi.org/10.1007/978-3-030-51054-1_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-51054-1_26" target="_blank" >10.1007/978-3-030-51054-1_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Make E Smart Again (Short Paper)

  • Original language description

    In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover’s inferences in real-time. Here, we strip E to the bare bones: we replace the KBO term ordering with an identity relation as the minimal possible ordering, disable literal selection, and replace evolved strategies with a simple combination of the clause weight and FIFO (first in first out) clause evaluation functions. We experimentally demonstrate that ENIGMA can learn to guide E as well as the smart, evolved strategies even without these standard automated theorem prover functionalities. To this end, we experiment with XGBoost’s meta-parameters over a dozen loops.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-51053-4

  • ISSN

    0302-9743

  • e-ISSN

    0302-9743

  • Number of pages

    8

  • Pages from-to

    408-415

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Paris

  • Event date

    Jun 29, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000884319500026