All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving ENIGMA-style Clause Selection while Learning From History

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00353738" target="_blank" >RIV/68407700:21730/21:00353738 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-79876-5_31" target="_blank" >https://doi.org/10.1007/978-3-030-79876-5_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-79876-5_31" target="_blank" >10.1007/978-3-030-79876-5_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving ENIGMA-style Clause Selection while Learning From History

  • Original language description

    We re-examine the topic of machine-learned clause selection guidance in saturation-based theorem provers. The central idea, recently popularized by the ENIGMA system, is to learn a classifier for recogniz ing clauses that appeared in previously discovered proofs. In subsequent runs, clauses classified positively are prioritized for selection. We pro pose several improvements to this approach and experimentally confirm their viability. For the demonstration, we use a recursive neural network to classify clauses based on their derivation history and the presence or absence of automatically supplied theory axioms therein. The auto matic theorem prover Vampire guided by the network achieves a 41 % improvement on a relevant subset of SMT-LIB in a real time evaluation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ20-06390Y" target="_blank" >GJ20-06390Y: Powering Automatic Theorem Provers by Machine Learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Deduction – CADE 28

  • ISBN

    978-3-030-79875-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    19

  • Pages from-to

    543-561

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Pittsburgh

  • Event date

    Jul 12, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000693448800031