All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

D3S - A discriminative single shot segmentation tracker

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346885" target="_blank" >RIV/68407700:21230/20:00346885 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.00716</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >10.1109/CVPR42600.2020.00716</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    D3S - A discriminative single shot segmentation tracker

  • Original language description

    Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S, which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve high robustness and online target segmentation. Without per-dataset finetuning and trained only for segmentation as the primary output, D3S outperforms all trackers on VOT2016, VOT2018 and GOT-10k benchmarks and performs close to the state-of-the-art trackers on the TrackingNet. D3S outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms, while running an order of magnitude faster, close to real-time.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-05360S" target="_blank" >GA18-05360S: Solving inverse problems for the analysis of fast moving objects</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-7168-5

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    7131-7140

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Seattle

  • Event date

    Jun 13, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000620679507041