All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Discriminative Single-Shot Segmentation Network for Visual Object Tracking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362940" target="_blank" >RIV/68407700:21230/22:00362940 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/TPAMI.2021.3137933" target="_blank" >https://doi.org/10.1109/TPAMI.2021.3137933</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TPAMI.2021.3137933" target="_blank" >10.1109/TPAMI.2021.3137933</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Discriminative Single-Shot Segmentation Network for Visual Object Tracking

  • Original language description

    Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S(2), which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve robust online target segmentation. The overall tracking reliability is further increased by decoupling the object and feature scale estimation. Without per-dataset finetuning, and trained only for segmentation as the primary output, D3S(2) outperforms all published trackers on the recent short-term tracking benchmark VOT2020 and performs very close to the state-of-the-art trackers on the GOT-10k, TrackingNet, OTB100 and LaSoT. D3S(2) outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Pattern Analysis and Machine Intelligence

  • ISSN

    0162-8828

  • e-ISSN

    1939-3539

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    9742-9755

  • UT code for WoS article

    000880661400085

  • EID of the result in the Scopus database

    2-s2.0-85122070980