Learning with Molecules beyond Graph Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347311" target="_blank" >RIV/68407700:21230/20:00347311 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/22:00356307
Result on the web
<a href="https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_24.pdf" target="_blank" >https://ml4molecules.github.io/papers2020/ML4Molecules_2020_paper_24.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning with Molecules beyond Graph Neural Networks
Original language description
In this paper we demonstrate a deep learning framework which is inherently based in the highly expressive language of relational logic, enabling to, among other things, capture arbitrarily complex graph structures. We show how GNNs and similar models can be easily covered in the framework by specifying the underlying propagation rules in the relational logic. The declarative nature of the used language then allows to easily modify and extend the propagation schemes into complex structures, such as the molecular rings which we choose for a short demonstration in this paper.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ20-19104Y" target="_blank" >GJ20-19104Y: Generative Relational Models</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů