Learning with Molecules beyond Graph Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00356307" target="_blank" >RIV/68407700:21230/22:00356307 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/20:00347311
Result on the web
<a href="https://sites.google.com/view/gclr2022/accepted-papers" target="_blank" >https://sites.google.com/view/gclr2022/accepted-papers</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning with Molecules beyond Graph Neural Networks
Original language description
We demonstrate a deep learning framework which is inherently based in the highly expressive language of relational logic, enabling to, among other things, capture arbitrarily complex graph structures. We show how Graph Neural Networks and similar models can be easily covered in the framework by specifying the underlying propagation rules in the relational logic. The declarative nature of the used language then allows to easily modify and extend the existing propagation schemes into more complex structures, such as atom rings in molecules, which we choose for a short demonstration in this work
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů