All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00348763" target="_blank" >RIV/68407700:21230/21:00348763 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.apsusc.2020.148526" target="_blank" >https://doi.org/10.1016/j.apsusc.2020.148526</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apsusc.2020.148526" target="_blank" >10.1016/j.apsusc.2020.148526</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer

  • Original language description

    Challenges related to the application of wear resistant coatings at high temperatures require the development of novel materials with an exceptional combination of mechanical, chemical and tribological properties. The present paper is focused on understanding of relationships between structure, composition and high-temperature performance of the Si-Ta-C-(N) coatings. The coatings were produced using combined magnetron sputtering (MS) and ion implantation (CMSII) technique. It was found that ion implanted coatings demonstrated better thermal shock resistance compared to MS Si Ta C (N) coatings. The Si-Ta-C-(N) coatings revealed a nanocomposite structure consisting of 2-3 nm fcc TaC(N) grains and amorphous a-Si and a-SiC(N) phases. The composition and structure of amorphous matrix and nanocrystallites strongly affected tribological performance of the Si-Ta-C-(N) coatings. The N-doped coatings exhibited exceptionally good tribological performance due to a higher ductility of N-rich amorphous a-SiCN and a-SiNx matrix, and fcc Ta(C,N)-based crystallites compared with the a-Si + a-SiC, and fcc TaC-based phases in N-free coating. The Si-Ta-C-(N) coatings easily withstood oxidation annealing at 800 degrees C due to the formation of a 200 nm protective TaSiOx amorphous layer. Oxidation annealings revealed that under thin protective TaSiOx layer crystalline components of coatings did not change when Si and C from the amorphous matrix started to diffuse towards the substrate at 800 degrees C but even after redistribution of elements and formation of oxide scale the coatings demonstrated reasonably high hardness - 13-16 GPa. Triboactivated formation of TaSiOx fibers which could slide/roll against the same TaSiOx tribolayer during high-temperature tribotests resulted in low coefficient of friction values (0.23 at 800 degrees C) and absence of wear.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008396" target="_blank" >EF16_026/0008396: Novel nanostructures for engineering applications enabled by emerging techniques supported by advanced simulations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Surface Science

  • ISSN

    0169-4332

  • e-ISSN

    1873-5584

  • Volume of the periodical

    541

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000608509400005

  • EID of the result in the Scopus database

    2-s2.0-85097074552