All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Variable-Speed Traveling Salesman Problem for Vehicles with Curvature Constrained Trajectories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354890" target="_blank" >RIV/68407700:21230/21:00354890 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IROS51168.2021.9636762" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9636762</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS51168.2021.9636762" target="_blank" >10.1109/IROS51168.2021.9636762</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Variable-Speed Traveling Salesman Problem for Vehicles with Curvature Constrained Trajectories

  • Original language description

    This paper presents a novel approach to the multigoal trajectory planning for vehicles with curvature-constrained trajectories such as fixed-wing aircraft. In the existing formulation called the Dubins Traveling Salesman Problem (DTSP), the vehicle speed is assumed to be constant over the whole trajectory, and that does not allow adaptation of the turning radius of the trajectory between the target locations. It does not support optimization of the overall flight time of the multi-goal trajectory by exploiting higher speeds for longer turning radii. Therefore, we propose a novel problem formulation called the Variable-Speed Traveling Salesman Problem (VS-TSP) that employs time-efficient trajectories with variable speed based on a generalization of the Dubins vehicle model, allowing multiple turning radii and change of the forward speed of the vehicle. The VS-TSP allows the vehicle to slow down if high maneuverability is necessary and speed up if high-speed turns with a large radius are beneficial to the overall tour cost. Based on the evaluation results for Cessna 172 aircraft model, the proposed VNS-based algorithm with variable speed provides up to about 20 % faster trajectories than a solution of the DTSP with a single turning radius.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • ISBN

    978-1-6654-1714-3

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Number of pages

    6

  • Pages from-to

    4714-4719

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Praha

  • Event date

    Sep 27, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000755125503109