Densification via polynomials, languages, and frames
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00350847" target="_blank" >RIV/68407700:21230/22:00350847 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jpaa.2021.106852" target="_blank" >https://doi.org/10.1016/j.jpaa.2021.106852</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2021.106852" target="_blank" >10.1016/j.jpaa.2021.106852</a>
Alternative languages
Result language
angličtina
Original language name
Densification via polynomials, languages, and frames
Original language description
It is known that every countable totally ordered set can be embedded into a countable dense one. We extend this result to totally ordered commutative monoids and to totally ordered commutative residuated lattices (the latter result fails in the absence of commutativity). The latter has applications to density elimination of semilinear substructural logics. In particular we obtain as a corollary a purely algebraic proof of the standard completeness of uninorm logic; the advantage over the known proof-theoretic proof and the semantical proof is that it is extremely short and transparent and all details can be verified easily using standard algebraic constructions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Volume of the periodical
226
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
—
UT code for WoS article
000704010100006
EID of the result in the Scopus database
2-s2.0-85111270087