All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vehicle Trajectory Planning: Minimum Violation Planning and Model Predictive Control Comparison

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359576" target="_blank" >RIV/68407700:21230/22:00359576 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IV51971.2022.9827430" target="_blank" >https://doi.org/10.1109/IV51971.2022.9827430</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IV51971.2022.9827430" target="_blank" >10.1109/IV51971.2022.9827430</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vehicle Trajectory Planning: Minimum Violation Planning and Model Predictive Control Comparison

  • Original language description

    State trajectory planning is one of the primary self-driving cars technology enablers. However, state trajectory planning is a more complex and computationally demanding task compared to path planning. The vehicle’s east and north position, yaw, yaw rate, velocity, and battery state of charge variables trajectory planning with a particular focus on the safety and economy of the vehicle operation is concerned in this paper. Comparison of Model Predictive Control (MPC) and Minimum Violation Planning (MVP) used for trajectory planning is brought in this paper. The latter is a sampling-based algorithm based on the RRT* algorithm compared to the other optimization-based algorithm. A heuristic is introduced to convert the complex non-convex optimization planning task to a convex optimization problem. Next, MVP algorithm enhancement is proposed to reduce the calculation time. Both algorithms are tested on a selected testing scenario using a high fidelity nonlinear single-track model implemented in Matlab & Simulink environment.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koopman operator framework for control of complex nonlinear dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2022 IEEE Intelligent Vehicles Symposium (IV)

  • ISBN

    978-1-6654-8821-1

  • ISSN

  • e-ISSN

    1931-0587

  • Number of pages

    6

  • Pages from-to

    145-150

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Aachen

  • Event date

    Jun 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000854106700021