Controlling a Swarm of Unmanned Aerial Vehicles Using Full-Body k-Nearest Neighbor Based Action Classifier
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362172" target="_blank" >RIV/68407700:21230/22:00362172 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICUAS54217.2022.9836097" target="_blank" >https://doi.org/10.1109/ICUAS54217.2022.9836097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUAS54217.2022.9836097" target="_blank" >10.1109/ICUAS54217.2022.9836097</a>
Alternative languages
Result language
angličtina
Original language name
Controlling a Swarm of Unmanned Aerial Vehicles Using Full-Body k-Nearest Neighbor Based Action Classifier
Original language description
The intuitive control of robot swarms becomes crucial when humans are working in close proximity with the swarm in unknown environments. In such operations, it is necessary to maintain the autonomy of the swarm while giving the human operator enough means to influence the decision-making process of the robots. This paper presents a human-swarm interaction approach using full-body action recognition to control an autonomous flock of unmanned aerial vehicles. We estimate the full-body pose of the human operator and use a k-nearest neighbor algorithm to classify the action made by the humans. Finally, the swarm uses the identified action to decide its goal direction. We demonstrate the practicality of our approach with a multi-stage experimental setup to evaluate the prediction accuracy and robustness of the system.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/GA20-10280S" target="_blank" >GA20-10280S: Reliable sensing-driven compact groups of micro aerial robots with adaptive shapes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2022 International Conference on Unmanned Aircraft Systems (ICUAS)
ISBN
978-1-6654-0593-5
ISSN
2373-6720
e-ISSN
2575-7296
Number of pages
8
Pages from-to
544-551
Publisher name
IEEE Industrial Electronics Society
Place of publication
Piscataway
Event location
Dubrovnik
Event date
Jun 21, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000854030400064