All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Relative Pose from SIFT Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362923" target="_blank" >RIV/68407700:21230/22:00362923 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-19824-3_27" target="_blank" >https://doi.org/10.1007/978-3-031-19824-3_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-19824-3_27" target="_blank" >10.1007/978-3-031-19824-3_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Relative Pose from SIFT Features

  • Original language description

    This paper derives the geometric relationship of epipolar geometry and orientation- and scale-covariant, e.g., SIFT, features. We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale. This equation can be used together with the well-known epipolar constraint to, e.g., estimate the fundamental matrix from four SIFT correspondences, essential matrix from three, and to solve the semi-calibrated case from three correspondences. Requiring fewer correspondences than the well-known point-based approaches (e.g., 5PT, 6PT and 7PT solvers) for epipolar geometry estimation makes RANSAC-like randomized robust estimation significantly faster. The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 800 00 image pairs. It is superior to the state-of-the-art in terms of processing time while often leading more accurate results. The solvers are included in GC-RANSAC at https://github.com/danini/graph-cut-ransac.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision – ECCV 2022, Part XXXII

  • ISBN

    978-3-031-19823-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    454-469

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Tel Aviv

  • Event date

    Oct 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000903565400027