All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homography From Two Orientation- and Scale-Covariant Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335895" target="_blank" >RIV/68407700:21230/19:00335895 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV.2019.00118" target="_blank" >https://doi.org/10.1109/ICCV.2019.00118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV.2019.00118" target="_blank" >10.1109/ICCV.2019.00118</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homography From Two Orientation- and Scale-Covariant Features

  • Original language description

    This paper proposes a geometric interpretation of the angles and scales which the orientation- and scale-covariant feature detectors, e.g. SIFT, provide. Two new general constraints are derived on the scales and rotations which can be used in any geometric model estimation tasks. Using these formulas, two new constraints on homography estimation are introduced. Exploiting the derived equations, a solver for estimating the homography from the minimal number of two correspondences is proposed. Also, it is shown how the normalization of the point correspondences affects the rotation and scale parameters, thus achieving numerically stable results. Due to requiring merely two feature pairs, robust estimators, e.g. RANSAC, do significantly fewer iterations than by using the four-point algorithm. When using covariant features, e.g. SIFT, this additional information is given at no cost. The method is tested in a synthetic environment and on publicly available real-world datasets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 IEEE International Conference on Computer Vision (ICCV 2019)

  • ISBN

    978-1-7281-4803-8

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    9

  • Pages from-to

    1091-1099

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Seoul

  • Event date

    Oct 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article