All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homography-based Egomotion Estimation Using Gravity and SIFT Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00345989" target="_blank" >RIV/68407700:21230/21:00345989 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-69525-5_17" target="_blank" >https://doi.org/10.1007/978-3-030-69525-5_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-69525-5_17" target="_blank" >10.1007/978-3-030-69525-5_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homography-based Egomotion Estimation Using Gravity and SIFT Features

  • Original language description

    Camera systems used, eg, in cars, UAVs, smartphones, and tablets, are typically equipped with IMUs (inertial measurement units) that can measure the gravity vector. Using the information from an IMU, the y-axes of cameras can be aligned with the gravity, reducing their relative orientation to a single DOF (degree of freedom). In this paper, we use the gravity information to derive extremely efficient minimal solvers for homography-based egomotion estimation from orientation-and scale-covariant features. We use the fact that orientation-and scale-covariant features, such as SIFT or ORB, provide additional constraints on the homography. Based on the prior knowledge about the target plane (horizontal/vertical/general plane, wrt the gravity direction) and using the SIFT/ORB constraints, we derive new minimal solvers that require fewer correspondences than traditional approaches and, thus, speed up the robust estimation procedure significantly. The proposed solvers are compared with the state-of-the-art point-based solvers on both synthetic data and real images, showing comparable accuracy and significant improvement in terms of speed. The implementation of our solvers is available at https://github. com/yaqding/relativepose-sift-gravity.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACCV 2020: Proceedings of the 14th Asian Conference on Computer Vision, Part I

  • ISBN

    978-3-030-69524-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    17

  • Pages from-to

    278-294

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Kyoto

  • Event date

    Nov 30, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article